Selective Mutation for Performance Improvement of Genetic Algorithms
نویسندگان
چکیده
منابع مشابه
Selective Mutation for Genetic Algorithms
In this paper, we propose a selective mutation method for improving the performances of genetic algorithms. In selective mutation, individuals are first ranked and then additionally mutated one bit in a part of their strings which is selected corresponding to their ranks. This selective mutation helps genetic algorithms to fast approach the global optimum and to quickly escape local optima. Thi...
متن کاملComparing Genetic Algorithms Computational Performance Improvement Techniques
A comparison of three methods for saving previously calculated fitness values across generations of a genetic algorithm is made. These methods lead to significant computational performance improvements. For real world problems, the computational effort spent on evaluating the fitness function far exceeds that of the genetic operators. As the population evolves, diversity usually diminishes. Thi...
متن کاملUsing Genetic Algorithms for Software Testing: Performance Improvement Techniques
One of the fundamental principles of agile software development involves delivering working software on a more frequent basis than traditional software development. To ensure the adequacy of these releases, testing must be undertaken which is capable of exploring and highlighting error-laden regions of software. Automated testing tools can provide support for quality assurance efforts within th...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولParallel Varying Mutation Genetic Algorithms
We study a model of GA that applies varying mutation parallel to crossover & background mutation, puts the operators in a cooperative-competitive stand with each other via extinctive selection, and uses adaptation and mutation strategy to enhance the effectiveness of parallel mutation. The relevance of the major components of the model to the performance of parallel varying mutation GAs is disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The KIPS Transactions:PartB
سال: 2010
ISSN: 1598-284X
DOI: 10.3745/kipstb.2010.17b.2.149